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DESTABILIZING FORCE OF LABYRINTH SEAL
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A great deal of research has recently been conducted to solve the subsyn-
chronous rotor vibration problems in hlgh-performance turbomachlnery. Partic-

ularly, the destabilizing effect of the labyrinth seal on compressors or

turbines has been investigated for many years (refs. l to 9). In spite of many
efforts the dynamic effect of the labyrinth seal had not been fully determined
from qualitative and quantitative points of view. But from our theoretical and

experimental work, we have determined completely the dynamic characteristics of
the labyrinth seal.

This paper presents the results of recent theoretical and experimental
works.

We developed a theoretical study and a numerical calculation program to
obtain the dynamic coefficients based on lwatsubo's perturbation method

(ref. 3) and 3enny's tangential momentum effect evaluation method (ref. 9).

The simplified formulation was programmed for practical design use. Qualita-

tive and quantitative evaluations of the computer program have been done in

several published works. Our experimental study also evaluated damping coef-
ficients and considered inlet swirl effects.

Experimental studies on the labyrinth seal have been performed to improve
blading efficiency and to analyze rotor dynamics. For example, the basic lab-

yrinth seal test was done in 1970 to verify Alford's theory, and static and

semlstatlc tests were performed to improve design, to reduce leakage, and to
evaluate cross-coupled stiffness. In 1984-1985, to confirm the phenomena, the

theoretical analysis of dynamic coefficients, and the swirl effect of the lab-

yrinth seal, we continued seal dynamic model tests. This paper presents pri-

marily the results of the dynamic test.
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length of labyrinth seal

length of strip pitch

ratio of specific heat

pressure

mass flow rate in axial direction

gas constant

radius of labyrinth seal

absolute temperature of gas in seal

time

length of acting surface of shear (stator)

length of acting surface of shear (rotor)

peripheral velocity of labyrinth seal, RS-_

peripheral unit length, RS-_

radial clearance of seal

angular displacement

friction coefficient (stator)

friction coefficient (rotor)

strip flow coefficient

density of gas

friction shear stress of stator surface

friction shear stress of rotor surface

rotating speed of rotor

whirling speed of rotor

Subscripts:

a outlet

e entry

F strip

i seal chamber number or strip
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x axial

Z strip number

* steady state

THEORETICAL STUDY OF DESTABILIZING FORCE CAUSED BY LABYRINTH SEAL

To investigate the destabilizing force caused by the labyrinth seal, an

analytical model of the labyrinth seal was established for calculating eight
dynamic coefficients (four stiffness coefficients and four damping coeffi-

cients) considering inlet swirl effects.

Modeling the Labyrinth Seal

In the flow model of the labyrinth seal Kostyuk introduced one peripheral

velocity variable C In the core flow of each labyrinth chamber and developed a
simple equation (ref. 5). The developed analytical method uses the modified

Kostyuk equation on the labyrinth seal shown In figure I.

The following fundamental equations are developed for the differential
element of unit length showed In figure 2:

Mass Flow Rate Passing Through Strip

2 = 2 2 2 _ p_)qi Pi'Si'(Pi-i
(i)

Mass Flow Rate Rectified In Chamber

2_RsFi.qi = 2_Rsi" qei

2_RSFi+l.qi+l = 2_R si.qai

(2)

Continuous Flow Rate in Chamber

8(Pifi) + fi.B(PiCi)
8t 8W_ + (qai- qei) = 0 (3)

Circumferential Momentum in Chamber

B(PifiCi)Bt + fi" 3(PiCi2)Swi + (qaiCai-qeiCei)+_iUi' -TiUi' = -;"BP---!i_xawi
(4)

Equation of State

Pi = gpi'Ri'Ti

-hi
Pi = Pi = Const.

(s)
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These equations were established for each strip and chamber. And the inlet and
outlet conditions of the seal were given as follows:

Po = P,o = Pe

Pz = Ta

PZ = P*z = Pa

Co = C,o = Ce

To = Te
(6)

Method of Solution

To solve equations (1) to (5), we applied Iwatsubo's method (ref. 3), that
is, the perturbation llneallzed method, as follows. The following nondlmen-

slonal variables _, n, C, and _ were introduced as

Pi = P,i(l + _i), Ci = C,i(l + qi)

Cei = Ce,i (i + qei). Cat = Ce. i+l = Ce,i+l (i + De. i+l ) (7)

qi = q,i'(l+ _i). 6i = 6,i(i + _i)

and, assuming that the rotor is whirling along an elliptical orbit,

is represented as

ai bi

_i = 6,--T c°smt'c°s_ + _ sin_t-sin_ (B)

Rotor displacement a,,b, and angular displacement ea,@ b have
the following relation:

i-i i-i
(9)

a i = a, + 6a'Z _j b i =b, -9b. Z _j
j=l j=l

Then these equations were divided into the steady-state equations and the

dynamlc-state equations shown in table I. As the number of variables was

greater than the number of equations, the following two assumptions were made:

(1) Steady-State Tangential Momentum Parameter Ks

The parameter Ks, suggested by Jenny (ref. 9), is defined as follows:

Ce, i Ca, i - Ks.(Ce, i- C,i) (IO)

This parameter is the one most important to the destabilizing force and depends

on the labyrinth seal geometry.

(2) Dynamlc-State Tangential Momentum Parameter KD

In the dynamic state, a parameter KD, different from Jenny's

parameter (ref. g) as

Ks
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qei = Ko.qi (11)

These steady state and dynamic state differential equations yield to the alge-

braic linear equations with eight coefficients Kxx, Kxy, Kyx, Kyy, Cxx, Cxy,
Cyx, and Cyy by Iwatsubo's method (ref. 3).

And assuming that the rotor Is at the center of the labyrinth seal, the
coefficients satisfy the next condition

o Kxx = Kyy, Kxy = -Ky x, Cxx = Cyy, Cxy = -Cyx (12)

Numerical Analysis and Comparison Between Theory and Published

Experlmental Results

Two experlments on labyrinth seal destabilizing force have been published:
Wrtght's (ref. l), on the effect of bore taper; and Benckert's (ref. 12), which
clarified the effect of entry swtrl. First, the analytical results of using
the preceding method are compared with Wrtght's experimental results. The con-
figuration of the seal Is shown In figure 3. The calculated and measured
dynamic coefficient data are-shown in figures 4 and 5. The calculation was
performed with respect to the experimental data on the effects of taper bore.
The taper bore effect Is summarized tn table II.

The second step compares the calculated results wlth Benckert's experi-

mental results for the full labyrinth seal. As shown In figure 6, the calcu-

lated results and Benckert's experimental results are compared using Benckert's

nondlmenslonal variables K*O, E*0 as follows.

, Kxy

No = (pz-po).Rs. L (13)

E_ = Po 2 Po 2-_-Co /(Pz- Po + -_-Caxo) (14)

The calculation and experiment have a good agreement. The calculated entry
swirl effect Is also shown In table II.

EXPERIMENTAL STUDY OF SMALL LABYRINTH SEAL MODEL

A small labyrinth seal model was tested to qualitatively confirm labyrinth
seal dynamics. The experimental model Is shown in figure 7. The model casing

had four nozzles attached to the annular chamber of the labyrinth seal In the

tangential direction (ref. 7). The inlet swirl could be alternated by nozzle

selection for each test condition. The dimensions of the model labyrinth seal

are summarized In table III. The model was designed to demonstrate the occur-
rence of whirl at relatively low pressure.
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The maln test items are summarized in table IV. The tests measured system
damping for each test condition. The effect of shaft rotation is very small
because of the size of the model and the limit of the rotating speed. There-
fore most tests were preformed in nonrotatlng conditions. System damping was
measured by perturbing test working conditions. The free vibration decay was
measured for each test. The following results were obtained from this series
of tests.

Effect of Labyrinth Seal on Rotor Stability

Figure 8 shows the typical test results for the original straight seal.

System damping varied according to nozzle inlet pressure. The nozzle inlet

pressure represents the seal inlet swirl velocity. The seal inlet pressure was

about one-half of the nozzle inlet pressure.

The measured damping ratio tended to increase up to 0.2 kgf/cm 2, to

decrease as pressure increased, and to fall Into the unstable region for pres-

sure over 0.5 kgf/cm 2. The vibration waves In figure 8 clearly show the

change of system damping.

Effect of the Labyrinth Seal on Damping

Figure 9 shows test results at the no-swlrl condition for the original

straight seal. The damping increased with inlet pressure and the natural fre-

quency slightly decreased. Thls shows that the seal has a direct effect on
damping.

Effect of Tapered bore

Figure lO shows the test results for the simplified tapered-bore seal.

The clearances were changed for half the number of seal fins so that the seal
would simulate both a convergent and a divergent seal. For thls model the

convergent seal showed more stable characteristics than the divergent seal.

However, the differences between them were very small.

Effect of Swirl Breaker

To reduce the destabilizing effect of inlet swirl, two types of swirl
breaker were tested. The one had radial bypass holes and the other had anti-

swirl bypass holes. The results (fig. ll) show a significant increase in

stability limit for both cases, and wlth the antlswlrl breaker the stable con-

dition could be maintained to about four times the inlet pressure.

Comparison of Test Results wlth Calculated Results

Figure 12 shows the nondlmenslonal destabilizing effect (by Benckert's
method) for swirl test results and analytical values for conditions associated

wlth the original straight seal model and wlth tapered-bore seal models. The

figure shows fairly good agreement between the theory and the experiment for

both the qualitative and quantitative points of views.
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EXAMPLE OF APPLICATION

The method of calculating labyrinth seal dynamics was applied to solve

compressor vibration problems (ref. lO).

When the compressor was replaced by a new machine with improved perform-

ance the machine experienced severe unstable subsynchronous whirl over 90 per-
cent load. The stability characteristics were analyzed by the Mltsublshl rotor

dynamics program (ref. ll). The middle of figure 13 shows the stability graph

of this rotor system; the graph includes the labyrinth seal destabilizing
effects calculated by this work.

After lengthy discussions of the analytical results and the observed phe-
nomena, we decided on a countermeasure, the installation of a damper bearing.

A one-day shutdown of the compressor allowed the damper bearing to be installed

without unbolting the compressor casing. When the compressor was run with the
damper bearing, the subsynchronous vibration completely disappeared. The top

and bottom figure of figure 13 compare vibration records from before and after

damper bearing installation.

CONCLUSIONS

Our theoretical and experimental study of the destabilizing force of the

labyrinth seal confirmed the following dynamic characteristics:

I. The unstable vibration phenomena of labyrinth seals are clearly

demonstrated by a simple model rotor system.

2. The existence of the damping effect in labyrinth seals is confirmed in
the absence of inlet swirl.

3. For this model the tapered clearance of the labyrinth seal has little
effect on the destabilizing force.

4. The special swirl breaker showed a reasonable reduction of the desta-

bilizing effect of the labyrinth seal.

5. Application of the results of the stability analysis gave a reasonable

interpretation for actual turbomachlnery vibration phenomena.
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TABLE I. - LINEALIZED EQUATION OF LABYRINTH SEAL

Circumferential Momentum Equation

f*i 8_i + f*i _ + f*___ii_RiTiT at Rsi _

• . 2 2 2 2
_ BR!TxP *i+l _ i+l 6 ,i+iCe*i+iR sFi+l

qe*iP*i C,iR2si

C*i._ _ 2f*iC*i aqi+ --6--; + Rsi a

_i+l

gRiTiP*i, 2 2
,iC e_iR_Fi )+L;_'_ .... 2 _i+16*i+iCe*i+iR_Fi+l+_62 ..

Me '_u*xA si

1 . • . . ui

2_2 _ ,._2
gRiTiP,i-I _ io*it,e_X_sFi

q e*iP *iC*i R2si

gRiTiqe*iCe*i+l

_i-i + P*i C*i qei+l

+ {_[uiIc*_I+_iu_lu_-c_'.-_l}n_-
gRi Tiqe*iCe*i

P*i C*i
qei

gRiTi

2qe*i P *i C *iRs2i
2 6 2 2 2

{_/i+l *i+l Ce*i+l_Fi+l (P,_i - P*'x+l)-Di 6,,iCe,iRSF_(P2c-i-P,_i)}

{a,Cos(_ +mt)+a, cos(':#_t)-b.cos(_ +_t)+b, cos(@-mt)}

+ --_- { -a, sin( Lp+oot)+a,sin(Lp -cot)+b,sin(_p +_t)+b.,csin (_-cot) }

+
gRiT_ 2 2 2 i

{_/i+l 6 2 2 ST_*i+l Ce*i+IRsFi+I (P*i - P*i+l) Zj
2 q_{iP *i C_'_xRs"i F--_

2 2 2 i-i
_/i 6"i Ce*iE SFi(Pei-i 2- - Pei) _q.£j}

j=l

{Sa cos( _ +_t)+ 8aCOS(lP -_t )- 8bCOS (_ +_t)+ 8bCOS(l_ -rot)

+ _ ( __i_lZj -Si£i ) {-easin(lP +cot)+ @asin( '_-_ t)+Sbsin( _p+cot )+8 bsin(_ -cot)}
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TABLE I. - CONCLUDED.

Steady State Equation

o Mass Flow Rate Equation

qi 2 2 2
- Pi-l- Pi

_ii 2_ i 2

o Continuous Equation

RSFiqi= RSiqei = RSFi+lqi+l

o Circumferential Momentum Equation

qe*i(Ce, i+l- Ce,i) +
i liui

2 gRiTi
P*i IC*i IC*i

1 llui
P*ilui C*il(ui - C'i) = 02 gRiT±

Dynamic State Equation

o Continuous Equation

2 2 2 2

f*i 8_i + C*if*i 8___ + C*if*i 8ri_ _ gRiTiP*i+]U i+16*i+iRSFi+l _i+l

n 8t Rsi-n 8_ Rsi-n 8_ qe, iP,iR2si

gRiTiP*i- 2 2 2 2 2 2 gRiTiP$ci_l 2 2 2
*iRsFi $i-i_ (_li+l_.i+iRSFi+l+_/i_ _':iRSFi)$i

qe.iR si qe.i P*iR2si

u gRiTi

2qe*iR*iR 2si

2 2 2 2 2 2 2

{;ii+l 6 *i+iR SFi+l (P *i-P *i+i)-_ i6,iRSFi (P*i -i-P_i )}

{a,cos(_# +_t )+a,cos (_ -cot)-b ,cos (_+wt )+b, cos (_ -wt )}

.tOni .

+--i--i -a, s in(_ +cot)+a, s in(_P-cot)+b,s in(IS+wt )+b,s in(D -rot)}

gRiTi
• 2

2q_'_iP*iRsi

2 2 2 2 i 2 2 - 2 2 i-i

{ _/i+16,i+iRSFi+l ( P *i - P*i+l) _q-£j- _i 6*iR SFi( P,i-I-P *i) 5Z.£j}
j=1 j=t

{ @a COS (I0 +c0t )+ea COS ( _0- wt )-eb cos (_+_t)+8b cos (_p-wt) }

i
to£i

+ _- ( _q-_j-Si _i ) {-ga sin(_+00t)+Sasin(_0-_t)+Sbsin(_)q_ot)+Bbsin(_-_t) }
j=l
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TABLE II. - SUMMARY OF CASE STUDY

Kxx

Kxy

Tapered bore seal

(Diverging - straight - converging)

Rigid

Destabilizing
for forward swirl

Cxx _ Stabilizing

Cxy Rigid for
forward swirl

Entry swirl

(backward - forward)

-,- A little rigid

(-) (+) Destabilizing
for forward
swirl

Positive and almost

independent of entry swirl

Positive and almost

independent of entry swirl

TABLE III. - SPECIFICATION OF TEST MODEL

Seal diameter, mm ............................. lO0

Seal radial clearance, mm ........................ 0.25

Height of seal fln, mm ......................... 2.75

Pitch of seal fln, mm .......................... 4.00
Numbers of flns ............................. 15x2

Inlet pressure, atm, absolute .................... l to 3.2

Discharge pressure, atm, absolute ...................... l

Critical speed, rpm ............................ 930

TABLE IV. - TEST ITEMS AND OBJECTIVES

Test items Objective

Original Swirl effect Effect of Inlet swirl

Rotation effect Effect of rotation of rotor

Clearance effect Effect of seal clearance of same configuration

Tapered Effect of convergent and divergent clearance
clearance effect conflguratlon

Wlth swirl Swirl breaker Effect of specially designed swirl breaker
breaker effect
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Figure 1. - Labyrinth seal.

(p+ --
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Figure 2. - Cross section of chamber.
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30=

21'
l l'::=:n.l

Revolution Speed : 1800rpm

Seal Type C2/C1 C1 (ram) C= (mm',

Diverging 1.4973 0.1311 0.1963

Straight 1.0 0.1585 0.1585

Converging 0.6642 0.1915 0.1272

Outlet Pressure : 1.076kgf/cm =

Flgure 3. - Seal configurations by Wrlght's
test (ref. 12).
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Figure 13. - Example of application of damper bearing to centrifugal
compressor.

223


